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SUMMARY

A class of arbitrary Lagrangian Eulerian (A.L.E.) time discretizations which inherit key energetic
properties (non-linear dissipation in the absence of forcing and long-term stability under conditions of
time-dependent loading), irrespective of the time increment employed, is established in this work. These
properties are intrinsic to real flows and the conventional Navier–Stokes equations. A description of an
incompressible, Newtonian fluid, which reconciles the differences between the various schools of A.L.E.
thought in the literature, is derived for the purposes of this investigation. The issue of whether these
equations automatically inherit the aforementioned energetic properties must first be resolved. In this
way natural notions of non-linear, exponential-type dissipation in the absence of forcing and long-term
stability under conditions of time-dependent loading are also formulated. The findings of this analysis
have profound consequences for the use of certain classes of finite difference schemes in the context of
deforming references. It is significant that many algorithms presently in use do not automatically inherit
the fundamental qualitative features of the dynamics. The main conclusions are drawn on in the
simulation of a driven cavity flow, a driven cavity flow with various, included rigid bodies, a die-swell
problem and a Stokes second-order wave. The improved, second-order accuracy of a new scheme for the
linearized approximation of the convective term is proved for the purposes of these simulations. A
method of generating finite element meshes automatically about included rigid bodies, which is thought
to be somewhat novel and involves finite element mappings, is also described. Copyright © 2000 John
Wiley & Sons, Ltd.

KEY WORDS: energy conservation; incompressible, Newtonian fluid; completely general reference de-
scription; arbitrary Lagrangian Eulerian; A.L.E.; free surface; finite elements; new Poin-
caré inequality; second-order accurate linearization of the convective term; automatic
mesh generation

1. INTRODUCTION

This work focuses on establishing a class of arbitrary Lagrangian Eulerian (A.L.E.) time
discretizations which inherit key energetic properties (non-linear, exponential-type dissipation
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in the absence of forcing and long-term stability under conditions of time-dependent loading)
irrespective of the time increment employed. The findings of this analysis have profound
consequences for the use of certain classes of difference schemes in the context of deforming
references. It is significant that many algorithms presently in use do not automatically inherit
the fundamental qualitative features of the dynamics.

Descriptions of fluid motion are conventionally based on the principles of conservation of
mass and linear momentum. One might hope that all such descriptions would accordingly
exhibit the aforementioned, key energetic properties consistent with the principle of energy
conservation. These properties are intrinsic to real flows and the conventional, Eulerian
Navier–Stokes equations.

A description of an incompressible Newtonian fluid, which reconciles the differences
between the so-called A.L.E. formulation of Hughes et al. [6] (deformation gradients absent)
and that of Soulaimani et al. [14] (deformation gradients present, but use is problematic), is
derived for the purposes of this investigation. The implications of the resulting description are
investigated in the context of energy conservation in a similar, but broader, approach to that
taken by others (e.g. Simo and Armero [13]) for the conventional, Eulerian Navier–Stokes
equations.

The main conclusions of this work rely on a new inequality and a number of lemmas, the
proofs of which are listed in an appendix at the end of the paper. The new inequality is used
in place of where the Poincaré–Friedrichs inequality might otherwise have limited the analysis.
The lemmas are mainly concerned with the new convective term. This analysis is extended in
that non-zero boundaries, so-called free boundaries and time-dependent loads are considered.

The resulting theory is used in the simulation of a driven cavity flow, a driven cavity flow
with various included rigid bodies, a die-swell problem, and a Stokes second-order wave. A
new scheme for the linearized approximation of the convective term is proposed and the
improved, second-order accuracy of this scheme is proved for the purposes of these simula-
tions. A somewhat novel method to generate finite element meshes automatically about
included rigid bodies, and which also involves finite element mappings, is also described.

2. A COMPLETELY GENERAL REFERENCE

The implementation of most numerical time integration schemes would be problematic were a
conventional Eulerian1 description of fluid motion to be used in instances involving deforming
domains. The reason is that most numerical time integration schemes require successive
function evaluation at fixed spatial locations (the exception being the finite element with
respect to time approach of Tezduyar et al. [17]). On the other hand, meshes rapidly snarl
when purely Lagrangian2 descriptions are used. It is for these reasons that a completely general
reference description is usually resorted to.

1 Eulerian or spatial descriptions are in terms of fields defined over the current configuration.
2 Langrangian or material descriptions are made in terms of fields defined over a reference (a material reference)
configuration.
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Eulerian and Lagrangian references are just two specific examples of an unlimited number
of configurations over which to define fields used to describe the dynamics of deforming
continua. They are both special cases of a more general reference description, a description in
which the referential configuration is deformed at will and which is the focus of this
investigation. A deforming finite element mesh would be a good example of just such a
deforming reference in practice. The transformation to the completely general reference
involves co-ordinates that were used as spatial variables only and the resultant description is
therefore inertial in the same way as Lagrangian descriptions are.

2.1. Domains, mappings and a notation

Consider a material body which occupies a domain V at time t. The material domain, V0, is
that corresponding to time t= t0 (the reference time, t0, is conventionally, but not always,
zero). A third configuration, V0 , which is chosen arbitrarily is also defined for the purposes of
this work. The three domains are related in the sense that points in one domain may be
obtained as one-to-one invertible maps from points in another.

For any general function f(x, t), a function, f0 (x̃, t) f(l*(x̃, t), t), can be defined in terms
of the domains and one-to-one, invertible mappings illustrated in Figure 1. Similarly,
f0(x0, t) f(l(x0, t), t) can be defined. This notation can be generalized for the component-wise
definition of higher order tensors. The key to understanding much of this work lies possibly in
adopting a component-wise defined notation.

In contrast to the function notation just established, the definition of the operators 90 and
div0 is not based on 9 and div. They are instead the referential counterparts, that is

90 = (

(x̃
and div0 =

(

(x̃1

+
(

(x̃2

+
(

(x̃3

The notation A :B is used to denote the matrix inner product AijBij throughout this work,
�·, ·�L 2(·) denotes the L2 inner product and ��·��L 2(·) the L2 norm.

2.2. Some general results for functions defined on the three domains

Three important results are necessary for the derivation of the completely general reference
description and these are presented below.

The material derivative in terms of a completely general reference
The material derivative of any vector field 7̃ in terms of a completely general reference is

(7̃

(t
+90 7̃ [F0 −1(7̃− 7̃ ref)] (1)

where 7̃ ref is the velocity of the reference deformation, and F0 is the deformation gradient given
by
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Figure 1. Schematic diagram of domains and mappings used in a completely general reference descrip-
tion.

F0 (x̃)=
(l*
(x̃

This result is demonstrated in Appendix B.

An element of area in terms of a distorting reference
The second important result can be recalled from general continuum mechanics. Consider an
element of area, size dA, with an outward unit normal n. Then

n dA=F0 − tN0 J0 dA0 (2)
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where dA0 and N0 denote the respective analogous size and outward unit normal of this element
of area in the referential configuration and J0 =det F0 . This result is demonstrated in most
popular textbooks on continuum mechanics (e.g. Lai et al. [10]).

Remark
Notice that N0 is the single exception to the � quantities devised in this work. N0 is the surface
normal perceived in a completely general reference and the components of n and N0 need have
nothing in common (N0 is not ñ).

The kinematic relation J: 0=J0 div 7
The material derivative of the Jacobian J0 is given by the relation

J: 0=J0 div 7

where J0 is defined as follows,

J0det
!(l
(x0

"
This result is demonstrated in most popular textbooks on continuum mechanics (e.g. Marsden
and Hughes [11]).

2.3. Deri6ation of the completely general equation

One way in which to derive a completely general reference description of an incompressible,
Newtonian fluid is to start with the balance laws in global (integral) form, and to make the
necessary substitutions in these integrals. The desired numerical implementation (similar to the
conventional Navier–Stokes one which has been thoroughly investigated and found to be
stable) is then obtained.

Conservation of mass
Let V(t) be an arbitrary sub-volume of material. The principle of conservation of mass states
that

d
dt

&
V(t)

r dV=0 (rate of change of mass with time=0)

d
dt

&
V0

r0J0 dV0=0 (reformulating in terms of the material configuration, V0)

&
V0

(

(t
{r0J0} dV0=0 (since limits are not time-dependent in the material

configuration) (3)
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&
V0

(r0J: 0+r; 0J0) dV0=0 (by the chain rule)

&
V(t)

(r; +r div 7) dV=0 (using the kinematic result J: 0=J0 div 7)

&
V0 (t)

�
r; +r

(6̃i
(x̃i

(x̃j

(xi

�
J0 dV0 =0 (reformulating in terms of the distorting

referential configuration, V0 (t))

[ (r; +r90 7̃ :F0 − t)J0 =0 (integrand must be zero since the volume was arbitrary)

Thus, for a material of constant, non-zero density,

90 7̃ :F0 − t=0 since J0 "0 (mappings are one-to-one and invertible)

Notice also that Equation (3) implies

(

(t
{r0J0}=0 (4)

since the volume was arbitrary and the integrand must therefore be zero.

Conservation of linear momentum (and mass)
The principle of conservation of linear momentum for an arbitrary volume of material V(t)
with boundary G(t) states that

d
dt

&
V(t)

r7 dV=
&

V(t)

rb dV+
&

G(t)

sn dA (5)

where r is density, b is the body force per unit mass, s is the stress, n the outward unit normal
to the boundary and 7 is the velocity. The term on the left-hand side can be rewritten as
follows:

d
dt

&
V(t)

r7 dV=
d
dt

&
V0

r070J0 dV0 (reformulating in terms of the material
configuration, V0)

=
&

V0

(

(t
{r070J0} dV0 (since limits are not time-dependent in the

material configuration)
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=
&

V0

�(70
(t

r0J0+70
(

(t
{r0J0}

�
dV0

=
&

V(t)

r7; dV (the second term above is zero as a consequence of Equation (4))

=
&

V0 (t)
r7̃; J0 dV0 (reformulating in terms of the distorting referential configuration, V0 )

=
&

V0 (t)
r
�(7̃
(t

+90 7̃ [F0 −1(7̃− 7̃ ref)]
�

J0 dV0 (using result (1) on page 981)

where 7; denotes the material derivative of 7. The surface integral becomes&
G(t)

sn dA=
&

G0 (t)
s̃F0 − tN0 J0 dA0 (reformulating in terms of a distorting reference

using result (2) on page 982)

=
&

V0 (t)
div0 {s̃F0 − tJ0 } dV0 (by the divergence theorem)

Finally, the term involving body force becomes&
V(t)

rb dV=
&

V0 (t)
rb0 J0 dV0 (reformulating in terms of a distorting reference)

Substituting these expressions into (5), remembering that the volume used in the argument was
arbitrary and that the entire integrand must therefore be zero, the conservation principles of
linear momentum and mass may be written in primitive form as

r
�(7̃
(t

+90 7̃F0 −1(7̃− 7̃ ref)
�

J0 =rb0 J0 +div0 P0 (6)

and

90 7̃ :F0 − t=0 (7)

where P0 is the Piola–Kirchoff stress tensor of the first kind, P0 = s̃F0 − tJ0 . In terms of the
constitutive relation, s= −pI+2mD, for a Newtonian fluid,

P0 = (−pI+m [90 7̃F0 −1+ (90 7̃F0 −1)t])F0 − tJ0 since D0 =
1
2

(970 + (970 )t)

The derivation of a variational formulation is along similar lines as that for the Navier–Stokes
equations (the purely Eulerian description). For a fluid of constant density, the variational
formulation
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r
&

V0
w̃ ·
(7̃

(t
J0 dV0 +r

&
V0

w̃ · 90 7̃ [F0 −1(7̃− 7̃ ref)]J0 dV0

=r
&

V0
w̃ · b0 J0 dV0 +&

V0
p̃90 w̃ :F0 − tJ0 dV0 −2m

&
V0

D0 (w̃):D0 (7̃)J0 dV0 +r
&

G0
w̃P0 N0 dG0 (8)

&
V0

q̃90 7̃ :F0 − t dV0 =0 (9)

is obtained, where q̃ and w̃ are respectively the arbitrary pressure and velocity of the
variational formulation.

Notice that the usual procedure of assigning a value of zero to the arbitrary velocity, w̃, at
the boundary has not been followed. The boundary integral in the variational momentum
equation has consequently not been eliminated as is normally done. The reasons are two-fold;
firstly problems for which the ensuing investigation is intended are of a free boundary type and
so the solution is not known there; secondly, a specific function (which cannot arbitrarily be
assigned a value of zero at the boundary) will be substituted for w̃ in the forthcoming analysis.

2.4. Reconciling the different schools of thought

Equations (6) and (7) are the completely general reference description of an incompressible,
Newtonian fluid. They reduce to the so-called A.L.E. equations of Hughes et al. [6] for an
instant in which spatial and referential configurations.

Since the approximate set of equations is broken into a sequence of discrete time steps in the
implementation, one is entitled to choose a new referential configuration during each time step,
should one so desire. This is what is known as an ‘updated’ approach; when each time step is
really a fresh implementation. In the case of time stepping schemes based about a single instant
(e.g. the generalized class of Euler difference schemes to be investigated in Section 4) a
considerably simplified implementation can be achieved by an appropriate choice of configura-
tions. Making the choice of a referential configuration which coincides with the spatial
configuration at the instant about which the time stepping scheme is based allows the
deformation gradient to be omitted from the approximation altogether (the deformation
gradient is identity under such circumstances). For such implementations (those which require
evaluation about a single point only) no error arises from the use of the equations cited in
Hughes et al. [6],

r
�(7
(t

+97(7−7 ref)
�

=rb+div s (10)

div 7=0 (11)

These equations are not valid for any, arbitrary choice of reference or if the implementation
requires the equation to be evaluated at more than one point within each time step (e.g. a
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Runge–Kutta or finite element-in-time scheme). It is important to remember that, in a discrete
context, the reference configuration is fixed for the duration of the entire time increment.
Although the referential configuration is hypothetical and can be chosen arbitrarily for each
time step, once chosen it is static for the duration of the entire time step. Once the coincidence
of configurations is ordained at a given instant, F0 is defined by the reference (mesh)
deformation, both before and after, and must be consistent.

The equations of Hughes et al. are an A.L.E. description in the very true sense under the
circumstances of implementations requiring evaluation about more than one point within each
time step (this is not surprising considering the equations have their origins in the arbitrarily,
either Lagrangian or Eulerian programs of Hirt et al. [5]). This fact is further borne out in
observing that key energetic properties, consistent with the principle of energy conservation,
are not automatically inherited by the equations of Hughes et al. in the context of more
general references.

The momentum equations of Soulaimani et al. [14] are flawed as a result of the mistaken
belief that s̃F0 −1J0 is the Piola–Kirchoff stress tensor of the first kind (e.g. p. 268 of Soulaimani
et al.). Yet another problem is illustrated by rewriting the conventional incompressibility
condition using the chain rule. The new incompressibility condition which arises is most
certainly

(6̃i
(x̃j

(x̃j

(xi

=0 and not
(6̃i
(x̃j

(x̃i

(xj

=0

Further errors arising (e.g. J. omitted in the first term on the right hand side of the momentum
equation, equation (10) on p. 268 of Soulaimani et al.) make the use of these equations
problematic.

There would seem to be no reason why one would wish to define the deformation about a
configuration other than that at the instant about which the implementation is based
(assuming the implementation used is indeed based about a single point, e.g. a finite difference)
thereby involving deformation gradients. Resolving the resulting difficulties associated with the
deformation gradients by means of a perturbation seems unnecessarily complicated in the light
of the above reasoning.

3. NATURAL NOTIONS OF ENERGY CONSERVATION IN TERMS OF THE
COMPLETELY GENERAL EQUATIONS

The effect of quantities parameterizing reference deformation on key energetic properties—
non-linear, exponential-type dissipation in the absence of forcing and long-term stability under
conditions of time-dependent loading—is investigated in this section. These properties, of the
form

K(7)5K(7 �t 0
) e−2nCt and lim

t��
sup K(7)5

M2

2n2C2
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respectively (where K=1
2r7L 2(V)

2 is the total kinetic energy), are intrinsic to real flows and the
conventional, Eulerian Navier–Stokes equations (see Temam [15,16], Constantin and Foias [2]
and Simo and Armero [13] in this regard). The effect of 7̃ ref on the aforementioned aspects of
conservation of the quantity

K0 (7̃)
1
2

r7̃J0 1/2L 2(V0 )
2

is essentially what is being investigated, with a view to establishing a set of conditions under
which the discrete approximation can reasonably be expected to inherit these self-same
energetic properties.

One might anticipate key energetic properties to be manifest only in instances involving a
fixed contributing mass of material, whether its boundaries be dynamic, or not. An analysis of
this nature only makes sense in the context of a constant volume of incompressible fluid.

Inequalities of the Poincaré–Friedrichs type are a key feature of any stability analysis of this
nature. Gradient containing L2 terms need to be re-expressed in terms of energy. In the case
of a ‘no slip’ (7=0) condition on the entire boundary the situation is straightforward, in that
it is possible to use the standard Poincaré–Friedrichs inequality: there exists a constant C1\0
such that

7L 25C197L 2 for all 7� [H0
1(V)]n

The use of the classical Poincaré–Friedrichs inequality is otherwise identified as a major
limitation, even in the conventional Navier–Stokes related analyses. The Poincaré–Friedrichs
inequality is only applicable in very limited instances where the value for the entire boundary
is stipulated to be identically zero. For boundary conditions of a more general nature, such as
those encountered in this study, in which parts of the boundary may be either a free surface,
have an imposed velocity or be subject to traction conditions, a more suitable inequality is
required. (It should, however, be noted that subtracting a boundary velocity and analysing the
resulting equation is nonetheless still a feasible alternative, despite the fact that the equations
are non-linear. This approach requires a more sophisticated and involved level of
mathematics3.)

Some common boundary types and associated descriptions are briefly summarized as
follows:

1. Fixed impermeable boundaries: The description at such boundaries is usually Eulerian and
the quantities F0 and 7̃ ref consequently become identity and zero respectively. These are
typically (but not always) ‘no slip’ boundaries, implying that 7̃ �G=0.

3 Temam [16] succeeds in arriving at an estimate which proves the existance of a maximal attractor in two dimensions
in this manner.
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2. Free boundaries: Conventional use allows the spatial mesh to slide along free boundaries
while still maintaining their overall Lagrangian character. Stated more formally,

ñ · (7̃− 7̃ ref)=0

The total volume is nonetheless still a material volume overall.
3. Imposed velocity-type boundaries: Conventional use entails descriptions which usually

become pure Eulerian at such boundaries. The total flow across such boundaries is zero for
an incompressible fluid if volume is to be preserved. For boundary-driven flows one
therefore usually assumes that the quantity

&
G

n · 7 dG

vanishes (á la Temam [16]).
4. Imposed traction-type boundaries: A variety of descriptions are used at such boundaries,

ranging from pure Eulerian to the vanishing ñ · (7̃− 7̃ ref) type described for free boundaries.

These are the modes of reference deformation commonly used at boundaries encountered in
practice and which will need to be accommodated if the theory is to be applicable.

The particular types of geometry considered are those that arise in problems involving the
motion of rigid bodies such as pebbles on the sea bed; thus a free surface is present, and the
domain may be multiply connected. The Poincaré–Friedrichs inequality does not hold on
subdomains of the domain in question and the constant is not optimal.

Further investigation (Reddy BD, by communication, University of Cape Town, 1998)
reveals a similar relation, the so-called Poincaré–Morrey inequality, holds providing the
function attains a value of zero somewhere on the boundary. The proof of the Poincaré–
Morrey inequality is, however, similar to that of one of Korn’s inequalities (see, for example,
Kikuchi and Oden [7]). In particular, it is non-constructive, by contradiction and the constant
cannot therefore be determined as part of the proof. Viewed in this light the forthcoming
inequality amounts to a specification of the hypothetical constant in the Poincaré–Morrey
inequality for domains having a star-shaped geometry.

Inequality 1 (A new Poincaré inequality)
Suppose 7 is continuous and differentiable to first-order and that 7 attains a maximum
absolute value, c, on an included, finite neighbourhood of minimum radius Rmin about a point
xorigin (as depicted in Figure 2).
If V is a bounded, star-shaped (about a point xorigin)4 domain in R3, then

7L 2(V)5
�(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

n1/2

97L 2(V)+cL 2(V)

4 By which is meant that every point in the domain can be reached by a straight line from xorigin that does not pass
outside of V.
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Figure 2. A finite neighbourhood of minimum radius Rmin about a point xorigin.

where Rmax is the distance to the farthest point in V from xorigin. (Proof in Appendix B.)

Remark
Notice that ‘no-slip’ boundaries which contravene the star-shaped requirement are not of any
consequence. This is because additional contributions to inequality terms, arising due to the
inclusion of any such intruding domains, can be arbitrarily constructed to have a value of zero
(without any loss of generality). If, for example, one were to apply the inequality in an
investigation of the flow around an aeroplane wing, one might make the convenient choice of
the wing interior as the desired neighbourhood.

This inequality is similar to the Poincaré–Friedrichs inequality when c=0, but is extended to
a geometrical subclass of domains which have free and partly non-zero boundaries, in addition
to being applicable to more challenging examples, such as the flow around an aeroplane wing.
It has a further advantage in that the coefficient is an order of magnitude more optimal when
used under the ‘no slip’ Poincaré–Friedrichs condition (under such conditions the domain can
always be deconstructed into a number of subdomains in which Rmin=1

3Rmax). The Poincaré–
Friedrichs inequality is a special case of the above inequality. The necessary lemma (below)
follows naturally from Inequality 1.

Lemma 1 (Deviatoric stress term energy)
The kinetic energy satisfies the bound (C/r)K0 (7̃)5D0 (7̃)J0 1/2L 2(V0 )

2 , where C is related to the
constant in Inequality 1, C\0. (Proof in Appendix B.)

As the reviewers rightly point out, this is Korn’s inequality with a specified constant limited to
star shaped geometries and a variety of such inequalities can be found on p. 323 of Marsden
and Hughes [11]. The following lemma will facilitate the elimination of the convective energy
rate in the forthcoming analysis.
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Lemma 2 (Convective energy rate)
The relation

−r�7̃, (90 7̃)F0 −1(7̃− 7̃ ref)J0 �L 2(V0 )= −
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )−
1
2

r
#
7̃, 7̃
(J0
(t
$

L 2(V0 )

holds for incompressible fluids. (Proof in Appendix B.)

The above lemma is crucial to the analysis for deforming references in particular. The
following lemma will establish that the boundary term vanishes at free boundaries under
conditions of conventional usage.

Lemma 3 (Free boundary energy rate)
The boundary term

−
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )

vanishes at free boundaries provided the description there is of a vanishing ñ · (7̃− 7̃ ref) type.
(Proof in Appendix B.)

This concludes the preliminaries required for the deforming reference energy analysis.

3.1. Exponential dissipation in the absence of forcing

The issue of whether non-linear, exponential-type dissipation in the absence of forcing is a
property intrinsic to the deforming reference description is resolved by the following theorem.

Theorem 1 (Exponential dissipation in the absence of forcing)
A sufficient condition for the completely general reference description to inherit non-linear,
exponential-type energy dissipation

K0 (7̃)5K0 (7̃ �t 0
) e−2nCt

in the absence of forcing is that the reference moves in a vanishing ñ · (7̃− 7̃ ref) fashion at free
boundaries and becomes pure Eulerian at boundaries of a fixed, impermeable type (the
conventional use).

Proof
Notice that an expression involving the kinetic energy can be formulated by substituting 7̃ for
w̃ in the variational momentum equation (8). Then

r
#
7̃,
(7̃

(t
J0 $

L 2(V0 )
=�p̃90 7̃, F0 − tJ0 �L 2(V0 )−2m �D0 (7̃), D0 (7̃)J0 �L 2(V0 )

−r�7̃, (90 7̃)F0 −1(7̃− 7̃ ref)J0 �L 2(V0 )+r�7̃, b0 J0 �L 2(V0 )+�7̃, P0 N0 �L 2(G0 ) (12)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 979–1019



S. J. CHILDS992

The order of integration and differentiation are fully interchangeable (the volume is still a
material volume overall for the type of time-dependent limits associated with free boundaries).
The term containing the pressure, that is

�p̃90 7̃ :F0 − tJ0 �L 2(V0 )

vanishes as a result of incompressibility (Equation (7)). Equation (12) can accordingly be
rewritten

1
2

r
� d

dt
7̃J0 1/2L 2(V0 )

2 −
#
7̃, 7̃
(J0
(t
$

L 2(V0 )

�
=K0 G0 imposed 7̃−2mD0 J0 1/2L 2(V0 )

2

−r�7̃, (90 7̃)F0 −1(7̃− 7̃ ref)J0 �L 2(V0 )

+r�7̃, b0 J0 �L 2(V0 )+�7̃, P0 N0 �L 2(G0 )

where K0 G0 imposed 7̃ is zero for the present by virtue of the fully interchangeable orders of
integration and differentiation (its meaning will be made clear in the pages to follow). Using
Lemmas 1 and 2 an expression

dK0 (7̃)
dt
5−2nCK0 (7̃)+r�7̃, b0 J0 �L 2(V0 )+�7̃, P0 N0 �L 2(G0 )

−
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )+K0 G0 imposed 7̃ (13)

is obtained, where K0 =1
2 r7̃J0 1/2L 2(V0 )

2 is the total kinetic energy.
The term F0 − tN0 · (7̃− 7̃ ref) vanishes at fixed impermeable boundaries since both F0 − tN0 · 7̃ and
7̃ ref vanish under such circumstances (assuming the description becomes purely Eulerian there).
This self-same term also vanishes at free boundaries according to Lemma 3. Boundaries of an
imposed velocity type need not be accounted for as a consequence of the stated ‘no forcing’
condition, and so

dK0 (7̃)
dt
5−2nCK0 (7̃)+r�7̃, b0 J0 �L 2(V0 )+�7̃, P0 N0 �L 2(G0 )

This equation has a solution of the form

K0 5K0 (7̃ �t 0
) e−2nCt

in the absence of forcing (‘no forcing’ [ b0 =P0 N0 =0).
A non-linear, exponential-type energy dissipation in the absence of forcing is therefore an

intrinsic property of the completely general referential description. This contractive flow
property is also an intrinsic property of the conventional Navier–Stokes equations. 
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3.2. Long-term stability under conditions of time-dependent loading

The formulation of suitable load and free surface bounds is necessary before the issue of
long-term stability (L2-stability) under conditions of time-dependent loading can be resolved.
The energy transfer across boundaries at which there is an imposed velocity is a further factor
which must be taken into account under conditions of forcing. The following lemma facilitates
the formulation of load and free surface bounds.

Lemma 4 (Force, free surface bounds)
The inequality

r�7̃, b0 J0 �L 2(V0 )+�7̃, P0 N0 �L 2(G0 )5
nC
2

(r7̃J0 1/2L 2(V0 )
2 +7̃L 2(G0 )

2 )

+
1

2nC
(rb0 J0 1/2L 2(V0 )

2 +P0 N0 L 2(G0 )
2 )

holds where nC is a constant, nC\0. (Proof in Appendix B.)

The relation immediately below will negate any convection-related contribution to the energy
bound at imposed velocity-type boundaries.

Lemma 5 (Convective energy rate at an imposed velocity-type boundary)
The relation

−
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )50

holds for boundaries at which there is an imposed velocity provided there is no net
inflow/outflow across such boundaries and the description there becomes pure Eulerian. (Proof
in Appendix B.)

This done, the mathematical machinery necessary to the long-term stability analysis is in place.

Theorem 2 (Long-term stability)
A sufficient condition for the completely general reference description to inherit the property
of long-term stability

lim
t��

sup K0 (7̃)5
M2

2n2C2

under conditions of time-dependent loading, where this time-dependent loading, the speed of
the surface and any imposed boundary velocity is bounded in such a way that

rb0 J0 1/2L 2(V0 )
2 +P0 N0 L 2(G0 )

2 +n2C27̃L 2(G0 )
2 +K0 G0 imposed 7̃

2 5M2 5

5 The additional terms K0 G0 imposed 7̃ are given in Appendix A. They are only applicable in instances where there is an
imposed velocity at the boundary. The other two boundary terms are only applicable at boundaries that involve
tractions.
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is that the description is of a vanishing ñ · (7̃− 7̃ ref) type at free boundaries, that it becomes
purely Eulerian at boundaries across which there is an imposed velocity or where boundaries
are of a fixed, impermeable type.

Proof
Cognizance must now be taken of a previously unencountered boundary type; that of a
stationary boundary across which there is an imposed velocity. The limits of the integral on the
left hand side of Equation (12) are time-dependent under such circumstances and the volume
is no longer a material volume overall. K0 G0 imposed 7̃ in Equation (13) is no longer zero. Using
Lemmas 3, 4 and 5 in Equation (13), then applying the above bound,

dK0 (7̃)
dt

+nCK0 (7̃)5
M2

2nC

Using the Gronwall lemma (see Hirsch and Smale [4]) leads to the differential inequality

dK0 (7̃)
dt
5

M2

2nC
e−nCt

which yields

K0 (7̃)5e−nCtK0 (7̃ �t= t 0
)+ (1−e−nCt)

M2

2n2C2

when solved. This in turn implies

lim
t��

sup K0 (7̃)5
M2

2n2C2

The preceding analyses lead to natural notions of non-linear dissipation in the absence of
forcing and long-term stability under conditions of time-dependent loading for the analytic
problem. These properties are also intrinsic features of real flows and the Navier–Stokes
equations. 

4. THE ENERGETIC IMPLICATIONS OF THE TIME DISCRETIZATION

This section is concerned with establishing a class of time discretizations which inherit the
self-same energetic properties (non-linear dissipation in the absence of forcing and long-term
stability under conditions of time-dependent loading) as the analytic problem, irrespective of
the time increment employed. In this section a generalized, Euler difference time-stepping
scheme for the completely general reference equation is formulated and the energetic implica-
tions are investigated in a similar manner to that carried out for the analytic equations in the
previous section.

This stability analysis is inspired by the approach of others to schemes for the conventional
Navier–Stokes equations. The desirability of the attributes identified as key energetic
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properties is recognized and they have been used as a benchmark in the analysis of various
conventional, Eulerian Navier–Stokes schemes by a host of authors. Related work on the
conventional, Eulerian Navier–Stokes equations can be found in a variety of references, for
example Temam [16] and Simo and Armero [13].

The analyses presented here are extended, not only in the sense that they deal with the
completely general reference equation, but also in that non-zero boundaries, so-called free
boundaries and time-dependent loads are able to be taken into account (the former two as a
consequence of the new inequality). The findings of this work have profound consequences for
the implementation of the deforming reference equations. It is significant that many algorithms
used for long-term simulation do not automatically inherit the fundamental qualitative features
of the dynamics.

A generalized time-stepping scheme
An expression for a generalized Euler difference time-stepping scheme can be formulated by
introducing an ‘intermediate’ velocity

7̃n+aa7̃ �t+Dt+ (1−a)7̃ �t for a� [0, 1] (14)

to the variational momentum equation (Equation (8) on page 986) where 7̃ �t and 7̃ �t+Dt are the
solutions at times t and t+Dt respectively, Dt being the time step. It is in this way that a
generalized time-discrete approximation of the momentum equation,

r

Dt
�w̃, (7̃n+1− 7̃n)J0 n+a�L 2(V0 n+a

)=�p̃90 w̃, F0 n+a
− t J0 n+a�L 2(V0 n+a

)

−2m�D0 (w̃), D0 (7̃n+a)J0 n+a�L 2(V0 n+a
)

−r�w̃, (90 7̃n+a)F0 n+a
−1 (7̃n+a− 7̃n+a

ref )J0 n+a�L 2(V0 n+a
)

+r�w̃, b0 n+aJ0 n+a�L 2(V0 n+a
)+�w̃, P0 n+aN0 n+a�L 2(G0 n+a

) (15)

is derived, where �·�L 2(V0 n+a
) denotes the L2 inner product over the deforming domain at time

t+aDt. G0 n+a, F0 n+a, J0 n+a, D0 n+a, P0 n+a, and b0 n+a are likewise defined to be the relevant
quantities evaluated at time t+aDt.

It will presently become apparent that relevant energy terms are not readily recovered from
the time-discrete equations for deforming references in general. It may therefore make sense to
perform the analyses for the time-discrete equation in the context of divergence free rates of
reference deformation only. A practically less restrictive alternative is too labour intensive.
This investigation is accordingly restricted to a subclass of reference deformations in which
‘reference volume’ is conserved. This is for reasons of expedience alone and it is hoped that this
subclass of deformations is representative.

Assumption 1
The assumptions J0 n=J0 n+a and J0 n+1=J0 n+a are made so that the desired energy terms are
readily recovered as
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K0 (7̃n)=
1
2

r7̃nJ0 n
1/2L 2(V0 n)

2 =
1
2

r7̃nJ0 n+a
1/2 L 2(V0 n+a

)
2

and

K0 (7̃n+1)=
1
2

r7̃n+1J0 n+1
1/2 L 2(V0 n+1)

2 =
1
2

r7̃n+1J0 n+a
1/2 L 2(V0 n+a

)
2

Remark
Notice that (J0 n+1−J0 n)/Dt=J0 div 7n+a

ref , the discrete form of (J0 /(t=J0 div 7 ref, can conse-
quently be rewritten as

div 7n+a
ref =0

under the conditions of the above assumption. It is for the practical expedience afforded by
Assumption 1 alone that this analysis is limited to instances in which div 7n+a

ref =0.

The following lemma will facilitate the elimination of the rate of energy change associated with
the convective term under these conditions.

Lemma 6 (Discrete convective energy rate)
The following relation involving the discrete convective term holds for an incompressible fluid
under circumstances of div 7n+a

ref =0

−r�w̃, (90 7̃n+a)F0 n+a
−1 (7̃n+a− 7̃n+a

ref )J0 n+a�L 2(V0 n+a
)

= −
1
2

r�7̃n+a, 7̃n+a(F0 n+a
− t N0 · (7̃n+a− 7̃n+a

ref ))J0 n+a�L 2(G0 n+a
)

(Proof in Appendix B.)

Remark
Recall that in the investigation of the analytic problem, a term arising from the manipulation
of the acceleration containing term (the term containing the rate of change of the Jacobian)
cancelled with the convective energy. It is therefore not surprising that assumptions pertaining
to the acceleration containing term (in particular to the rate of change of the Jacobian) in the
discrete problem will, once made, also be necessary for the corresponding discrete convective
energy term to vanish (referring to the div 7 ref=0 condition of Lemma 6). This is a good
prognosis for the energetic behaviour of the discrete problem in circumstances of reference
deformations excluded by Assumption 1. The full ramifications of Assumption 1 are consid-
ered in Subsection A.2 of Appendix A. This concludes the preliminaries required for the
analysis of the time-discrete equation.
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4.1. Non-linear dissipation in the absence of forcing

The following analysis establishes a class of time-stepping schemes which exhibit non-linear
dissipation in the absence of forcing regardless of the time increment employed.

Theorem 3 (Non-linear dissipation in the absence of forcing)
Suppose that the description is of a vanishing ñn+a · (7̃n+a− 7̃n+a

ref ) type at free boundaries,
purely Eulerian at boundaries across which there is an imposed velocity and that the
deformation rate of the reference is divergence free. A sufficient condition for the kinetic
energy associated with the generalized class of time-stepping schemes to decay non-linearly

K0 (7̃n+1)−K0 (7̃n)5−Dt2mD0 (7̃n+a)J0 n+a
1/2 L 2(V0 n+a

)
2

in the absence of forcing and irrespective of the time increment employed, is that the scheme
is as, or more, implicit than central difference. That is

a]
1
2

Proof
Expressing the ‘intermediate’ velocities 7̃n+1/2 and 7̃n+a in terms of Equation (14) and
subtracting, the result

7̃n+a=
�

a−
1
2
�

(7̃n+1− 7̃n)+ 7̃n+1/2 (16)

is obtained. The first step towards formulating an expression involving the kinetic energy of
the generalized time stepping-scheme (15) is to replace the arbitrary vector, w, with 7̃n+a. By
further substituting (16) into (15) and eliminating the pressure containing term on the basis of
incompressibility (Equation (7)), an expression involving the difference in kinetic energy over
the duration of a single time step is obtained.

Incompressibility and a restriction on reference deformations to those for which div 7n+a
ref is

zero ensure that the Lemma 6 condition is satisfied.
The equation

K0 (7̃n+1)−K0 (7̃n)= −r
�

a−
1
2
�(7̃n+1− 7̃n)J0 n+a

1/2 L 2(V0 n+a
)

2 −Dt 2mD0 (7̃n+a)J0 n+a
1/2 L 2(V0 n+a

)
2

+Dtr�7̃n+a, b0 n+aJ0 n+a�L 2(V0 n+a
)+Dt�7̃n+a, P0 n+aN0 n+a�L 2(G0 n+a

)

−Dt
1
2

r�7̃n+a, 7̃n+a(F0 n+a
− t N0 · (7̃n+a− 7̃n+a

ref ))J0 n+a�L 2(G0 n+a
) (17)
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is then obtained. The term F0 n+a
− t N0 n+a · (7̃n+a− 7̃n+a

ref ) vanishes at fixed impermeable
boundaries since both F0 n+a

− t N0 n+a · 7̃n+a and 7̃n+a
ref vanish under such circumstances (assuming

the description becomes purely Eulerian there). This self-same term also vanishes at free
boundaries according to Lemma 3. Boundaries of an imposed velocity type need not be
accounted for as a consequence of the stated ‘no forcing’ condition, and so

K0 (7̃n+1)−K0 (7̃n)5−r
�

a−
1
2
�(7̃n+1− 7̃n)J0 n+a

1/2 L 2(V0 n+a
)

2 −Dt2mD0 (7̃n+a)J0 n+a
1/2 L 2(V0 n+a

)
2

because of this condition. Thus, the kinetic energy inherent to the algorithmic flow decreases
non-linearly in the absence of forcing, irrespective of the time increment employed and for
arbitrary initial conditions provided that

a]
1
2

and div 7n+a
ref =0

The former requirement translates directly into one specifying the use of schemes as, or more,
implicit than central difference. Only for descriptions which are divergence free has it here been
guaranteed that energy will not be artificially introduced by way of the reference. 

Remark
Notice (by Lemma 1) that for a=1

2 an identical rate of energy decay

K0 (7̃n+1)−K0 (7̃n)
Dt

5−2nCK0 (7̃n+a)

is obtained for the discrete approximation as was obtained for the equations.

4.2. Long-term stability under conditions of time-dependent loading

This second part of the time-discrete analysis establishes a class of time stepping schemes
which exhibit long-term stability under conditions of time-dependent loading, irrespective of
the time increment employed. The following lemma is necessary for the analysis and is
concerned with devising a bound for the energy at an intermediate point in terms of energy
values at either end of the time step.

Lemma 7 (Intermediate point energy)
The following bound applies

K0 (7̃n+a)]a(a−c+ac)K0 (7̃n+1)+ (1−a)
�

1−a−
a

c
�

K0 (7̃n)

where c is some constant, c\0.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 979–1019



A.L.E. TIME DISCRETIZATION 999

The optimal choice of the constant c is established farther on. The following theorem
establishes a class of time-stepping schemes which exhibit long-term stability under conditions
of time-dependent loading regardless of the time increment employed.

Theorem 4 (Long-term stability)
Suppose that the description is of a vanishing ñn+a · (7̃n+a− 7̃n+a

ref ) type at free boundaries,
that it becomes purely Eulerian at fixed impermeable boundaries and that the rate at which the
reference is deformed is divergence free. A sufficient condition for the algorithmic flow to
exhibit long-term stability under conditions of time-dependent loading, assuming this time-
dependent loading and the speed of the free surface is bounded in such a way that

rb0 n+aJ0 n+a
1/2 L 2(V0 n+a

)
2 +P0 n+aN0 n+aL 2(G0 n+a

)
2 +n2C27̃n+aL 2(G0 n+a

)
2 5M2 6

is

a\
1
2

Proof
Substituting Lemmas 1, 3 and 4 into Equation (17), applying the above bound and choosing
a]1

2 one obtains

K0 (7̃n+1)−K0 (7̃n)
Dt

+nCK0 (7̃n+a)5
M2

2nC

From this point on the argument used is identical to that of Simo and Armero [13] for the
conventional, Eulerian Navier–Stokes equations. Substitution of Lemma 7 leads to a recur-
rence relation,

K0 (7̃n+1)5
1−nC(1−a)

�
1−a−

a

c
�
Dt

1+nCa(a−c+ac)Dt
K0 (7̃n)+

M2Dt
2nC [1+nCa(a−1+ac)Dt ]

Using this recurrence relation to take cognizance of the energy over all time steps,

6 Note that this bound does not incorporate a contribution from boundaries of an imposed velocity type in any
obvious way. The two boundary terms are only applicable at boundaries which involve tractions.
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K0 (7̃n+1)5

<
1−nC(1−a)

�
1−a−

a

c
�
Dt

1+nCa(a−c+ac)Dt

=n

K0 (7̃0)

+
M2Dt

2nC [1+nCa(a−c+ac)Dt ]
%

n−1

k=0

<
1−nC(1−a)

�
1−a−

a

c
�
Dt

1+nCa(a−c+ac)Dt

=k

(18)

is obtained. An infinite geometric series which converges so that

lim
n��

sup K0 (7̃n+1)5
M2Dt

2nC [1+nCa(a−c+ac)Dt ]

<
1−

1−nC(1−a)
�

1−a−
a

c
�
Dt

1+nCa(a−c+ac)Dt

=−1

=
M2

2nC
�

nCa(a−c+ac)+nC(1−a)
�

1−a−
a

c
�n

results, providing the absolute ratio of the series is less than unity. That isF
1−nC(1−a)

�
1−a−

a

c
�
Dt

1+nCa(a−c+ac)Dt

F
B1

Therefore, either

−1−nCa(a−c+ac)DtB1−nC(1−a)
�

1−a−
a

c
�
Dt

or

1−nC(1−a)
�

1−a−
a

c
�
DtB1+nCa(a−c+ac)Dt (19)

in order for the bound to exist. Notice, furthermore, that for this desired convergence to be
unconditional (regardless of the time increment employed) requires

a−c+ac]0 (20)

The denominator in the series ratio might otherwise vanish for some value of Dt.
For a� [12, 1] Equations (19) and (20) together imply

(1−a)
a
Bc5

a

(1−a)

which in its turn implies
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(1−a)
a
B

a

(1−a)

The choice of the parameter a\1
2 therefore leads to an infinite geometric series which forms

the desired upper bound. The minimum value of this bound occurs for c chosen according to

inf(1−a)

a
Bc5

a

(1−a)

1

nCa(a−c+ac)+nC(1−a)
�

1−a−
a

c
�=

1
nC(2a−1)2

The value of this upper bound, which occurs for the choice of the parameter a\1
2, is then

lim
n��

sup K0 (7̃n+1)5
M2

2n2C2(2a−1)2

In this way one arrives at a class of algorithms which are unconditionally (irrespective of the
time increment employed) stable. 

Remark
Notice that for a=1 one obtains an identical energy bound for the discrete approximation as
was obtained for the equations.

5. SOME NUMERICAL EXAMPLES

Some numerical results for problems of the type in question are given. The theory thus far
developed was employed in the simulation of a driven cavity flow, a driven cavity flow with
various, included rigid bodies, a die-swell problem and a Stokes, second-order wave.

The approach taken when approximating free surfaces, was that they may be treated as a
material entity, that is, the material derivative of the free surface was assumed to be zero.
Euler’s equations and conservation of linear momentum were used to determine the motion of
the rigid body. A predictor–corrector method was used to solve the combined sub-problems.

A backward difference scheme was used to approximate the time derivative in the fluid
sub-problem (in compliance with Theorems 3 and 4 conditions), the finite element method was
used for the spatial (referential ‘space’) discretization and a Q2–P1 element pair was used as a
basis. A penalty method was employed to eliminate pressure as a variable and non-linearity
was circumvented by way of a new, second-order accurate linearization. Linearizing with a
guess obtained by extrapolating through solutions from the previous two time steps leads to
second-order accuracy.

Theorem 5
The linearized terms, (27 �t−7 �t−Dt) · 97 �t+Dt and 7 �t+Dt · 9(27 �t−7 �t−Dt), are second-order
accurate (have error O(Dt2)) approximations of the non-linear term (7 · 97)�t+Dt.
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Proof

6 �t+Dt=7 �t+Dt
(7

(t
)
t

+O(Dt2) (by Taylor series)

=7 �t+Dt
�7 �t−7 �t−Dt

Dt
+O(Dt)

�
+O(Dt2) (using a backward difference)

=27 �t−7 �t−Dt+O(Dt2)

(7 · 97)�t+Dt= [27 �t−7 �t−Dt+O(Dt2)] · 97 �t+Dt

= [27 �t−7 �t−Dt ] · 97 �t+Dt+O(Dt2)

The above linearization schemes are an improvement on the conventional 7 �t · 97 �t+Dt
7 or

7 �t+Dt · 97 �t linearization schemes by an order of magnitude. A detailed exposition of all
numerical methods otherwise used in these simulations can be found in Childs and Reddy
[1]. 

5.1. Example 1: dri6en ca6ity flow

The problem is essentially that of a square, two-dimensional pot whose lid is moved across the
top at a rate equal to its diameter for a Reynolds number of unity. The boundary conditions
are accordingly ‘no slip’ on container walls and a horizontal flow of unity across the top
(depicted in Figure 3).

The idea here was to compare results obtained using the completely general reference
equation on a deforming mesh with those obtained using the conventional, Eulerian Navier–
Stokes equations (Figures 3–5).

Figure 3. The problem, the mesh and the pressures obtained using the conventional Eulerian equations.

7 Favoured in terms of both rate and radius of convergence by Cuvelier et al. [3].
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Figure 4. Pressures obtained using the completely general reference equation and a deforming mesh.

The corresponding velocity profiles along the cuts depicted in Figure 3 are given in
Figure 5.

5.2. Example 2: ‘pebble in a pothole’

In this example rigid bodies of varying mass and moments of inertia were released from rest
in a flow dictated by the same boundary conditions as the driven cavity flow of the previous
example. One would expect a die bead (a small rigid body of neutral buoyancy) to move in
tandem with the fluid soon after its release from rest. One might also expect a clockwise
rotation to be induced by concentrating the mass closer to the centre, i.e. lowering the moment
of inertia.

The finite element mesh was automatically generated and adjusted about the included rigid
body in what is possibly a slightly novel fashion. A small region of mesh immediately adjacent
to the included rigid body was repeatedly remapped to cope with the changing orientation the
remainder was squashed/stretched according to the translation.

To begin with, a square region of mesh centered on, and including the rigid body, is deleted
(depicted in Figure 6). Each of four wedge-shaped regions is then demarcated (the intersections
of lines which bisect corners and edges of the square frame, with the surface of the rigid body
are located using Newton’s method) by as many points as there are nodes in an element i.e.
each wedge shaped-region is set up as a massive element.

Chunks of uniform mesh, which have identical extremities to those of the master element,
are then mapped into the newly-demarcated, wedge-shaped regions using finite element
mappings (in exactly the same manner as points in the master element domain are, in theory,
mapped into individual mesh elements). Further, fine adjustment of nodes intended to
delineate the surface of the rigid body is accomplished by moving them along a line between
node and centre, to the rigid body surface using Newton’s method. The mesh outside the ‘box’
(the box containing the four wedges enclosing the rigid body) is squashed/stretched according
to the requirements of the translation (the nodes are translated by a factor inversely
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Figure 5. In this test part of the mesh was successively compressed and decompressed by 5% over two
time steps of length 0.05.
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Figure 6. The local distortion is obtained by mapping square chunks of rectangular mesh using finite
element mappings.

proportional to their distance from the box). This method satisfies the requirement that
ñ · (7̃− 7̃ ref) vanishes at the fluid-rigid body interface (a condition in Theorems 1, 2, 3 and 4).
Mesh refinement in the vicinity of the included, rigid body is an automatic by-product of this
method (Figure 7).

Figure 7. Typical meshes which result when using this method of automatic mesh generation about rigid
bodies which are simultaneously rotating and translating.
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Various rigid bodies were introduced to the driven cavity flow problem described in
Subsection 5.1, in the absence of a body force. The results in Figure 8 involve the ellipse

x1
2

22 +
x2

2

12 =0.0252

whose major axis is 0.1. The quantities m̄ and J( ii(no sum) are a dimensionless mass and ith
principle moment of inertia respectively.

Figure 8. The trajectories of various included rigid bodies released from rest at the centre of the driven
cavity flow described. Top left: Re=0.025, m̄=251.3, J( 33=314.2 and t=3.6 s. Top right: Re=0.025,
m̄=251.3, J( 33=1.0 and t=4.0 s. Bottom left: Re=0.025, m̄=251.3, J( 33=0.1 and t=3.6 s. Bottom

right: Re=1, m̄=1, J( 33=0.1 and t=2.0 s.
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Figure 9. Die swell ratios predicted for various Reynolds numbers using an inlet velocity profile of
6̄1= (Re/1)(3/2)(1− x̄2

2) and the methods described. (Bars on the variables merely indicate that they are
dimensionless.)

5.3. Example 3: die swell problems

The axis symmetric die swell (or fluid jet) problem is a free surface problem well documented
in the literature (Kruyt et al. [9], Omodei [12] and Engelman and Dupret quoted in Kruyt et
al.). The basic theme to this problem is the extrusion of a fluid with initial parabolic flow
profile from the end of a short nozzle (Figures 9–11).

5.4. Example 4: a Stokes second-order wa6e

In this problem the velocity profile and surface elevation predicted by Stokes second-order
wave theory (see Koutitas [8]) were used as boundary conditions for flow and free surface
subproblems respectively (Figure 12).

Problems with wave propagation were subsequently experienced as time progressed. It
should be noted, however, that the problem was not attempted with the same seriousness as
previous examples, the Reynolds number was low and the mesh was poor (there being only
three elements in the vertical extent of the mesh).

6. CONCLUSIONS

The correct equations, which describe the motion of an incompressible, Newtonian fluid and
which are valid for a completely general range of reference deformations, are Equations (6)
and (7). For implementations requiring the equations to be evaluated about a single instant
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Figure 10. Die swell ratios predicted for various Reynolds numbers using an inlet velocity profile of
6̄1= (Re/10)(3/2)(1− x̄2

2) and the methods described.

Figure 11. Die swell ratios predicted for various Reynolds numbers using an inlet velocity profile of
6̄1= (Re/20)(3/2)(1− x̄2

2) and the methods described.

within each time step only (e.g. finite differences), the deformation gradients may be assumed
identity i.e. the equations of Hughes et al. [6] (Equations (10) and (11)) will suffice.

In this work it is shown (as was hoped) that non-linear, exponential-type dissipation in the
absence of forcing and long-term stability under conditions of time-dependent loading are
properties automatically inherited by deforming reference descriptions. The single provisor is
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Figure 12. A Stokes second-order wave.

that the conventional boundary descriptions are used (vanishing ñ · (7̃− 7̃ ref) type at free
boundaries, purely Eulerian at boundaries across which there is an imposed velocity or where
boundaries are of a fixed, impermeable type). These properties are intrinsic to real flows and
the conventional, Eulerian Navier–Stokes equations.

Relevant energy terms are, however, not readily recovered from the time-discrete equations
for deforming references in general. Only for divergence free rates of reference deformation
could it consequently be guaranteed that energy would not be artificially introduced to the
algorithmic flow by way of the reference. A further casualty of the discrete analysis is its
failure to account for flows driven by their boundaries in any obvious way i.e. boundaries of
an imposed velocity type do not enter explicitly into the bound. Scope for the further
development of this work therefore exists.

The divergence free assumption was made for reasons of expedience alone and it is hoped
that the findings of the time discrete analysis can be extrapolated to a more general class of
mesh deformations. If one were to be overly cautious on this basis one would be faced with the
additional challenge of enforcing mesh deformations which are divergence free. Such a totally
divergence free description may, however, not be practical. Both the purely Lagrangian and
purely Eulerian fluid descriptions have divergence free rates of distortion.

What is clear is that there are inherent problems with using certain classes of time stepping
schemes and the use of finite difference schemes more implicit than central difference is
consequently advocated. The limitations of the time-discrete analysis do not detract from this
finding in any way. Such differences exhibit the key energetic properties (non-linear, exponen-
tial-type dissipation in the absence of forcing and long-term stability under conditions of
time-dependent loading) irrespective of the time increment employed. A backward difference is
the obvious choice. Calculations at time t+aDt would require an intermediate mesh and
associated quantities for instances in which a"1 (since a\1

2).
The author recommends a strategy in which a predominantly Eulerian description is used,

where possible, for the bulk of the problem (from an efficiency point of view) and the
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completely general reference description for the remainder is appropriate. Purely Eulerian
descriptions have the advantage of a ‘one off’ finite element construction and involve none of
the hazards of a badly distorted reference.

Lastly, the linearized terms (27 �t−7 �t−Dt) · 97 �t+Dt and 7 �t+Dt · 9(27 �t−7 �t−Dt) are second-
order accurate approximations of the convective term and a remarkably practical, simple and
effective method to automatically generate meshes about included rigid bodies was devised.

ACKNOWLEDGMENTS

Daya Reddy is thanked for the loan of references and related advice. Grzegorz Lubczonok and Ronald
Becker are thanked for their respective opinions on the inequality (Inequality 1). Others who assisted the
author in various ways (including the provision of resources and moral support) are Kevin Colville,
George Ellis and Rait Harnett. The final arrangement and editing of this work was carried out under the
supervision of Philip Gresho.

APPENDIX A

A.1. The contribution K0 G0 imposed 7̃ at imposed 6elocity-type boundaries

Additional terms which arise from the limits of the integral

r
& x̃%1

x̃ 1
0

& x̃%2

x̃ 2
0

& x̃%3

x̃ 3
0

7̃ ·
(7̃

(t
J0 dx̃3 dx̃2 dx̃1

when changing the order of differentiation and integration at boundaries across which there is
an imposed velocity are:

−
1
2

r
�Dx̃ %1

Dt
�& x̃%2

x̃ 2
0

& x̃%3

x̃ 3
0

7̃ · 7̃J0 dx̃3 dx̃2
�)

x̃ %1

−
Dx̃ %10

Dt
�& x̃%2

x̃ 2
0

& x̃%3

x̃ 3
0

7̃ · 7̃J0 dx̃3 dx̃2
�)

x̃ 1
0

+
& x̃%1

x̃ 1
0

Dx̃ %2
Dt

�& x̃%3

x̃ 3
0

7̃ · 7̃J0 dx̃3
�)

x̃ %2

dx̃1−
& x̃%1

x̃ 1
0

Dx̃2
0

Dt
�& x̃%3

x̃ 3
0

7̃ · 7̃J0 dx̃3
�)

x̃ 2
0

dx̃1

+
& x̃%1

x̃ 1
0

& x̃%2

x̃ 2
0

Dx̃ %3
Dt

(7̃ · 7̃J0 )�x̃ %3 dx̃2 dx̃1−
& x̃%1

x̃ 1
0

& x̃%2

x̃ 2
0

Dx̃3
0

Dt
(7̃ · 7̃J0 )�x̃ 3

0 dx̃2 dx̃1
n

(21)

(using Leibnitz’s rule for differentiation under the integral sign).
Note that the terms D. . . /Dt can be given a

(. . .
(t

+90 . . . F0 −1(7̃− 7̃ ref)

interpretation in terms of the relation (1) established at the beginning of Section 2.2. For
descriptions which are purely Eulerian at such fixed boundaries, 7̃ ref vanishes and F0 is identity.
Thus the extra terms, (21) above, can be rewritten (with minus sign omitted)
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1
2

r
�
9x %1 · 7

�& x%2

x 2
0

& x%3

x 3
0

7 · 7 dx3 dx2
�)

x̃ %1

−9x1
0 · 7

�& x%2

x 2
0

& x%3

x 3
0

7 · 7 dx3 dx2
�)

x̃ 1
0

+
& x%1

x 1
0

9x %2 · 7
�& x%3

x 3
0

7 · 7 dx3
�)

x̃ %2

dx1−
& x%1

x 1
0

9x2
0 · 7

�& x%3

x 3
0

7 · 7 dx3
�)

x̃ 2
0

dx1

+
& x%1

x 1
0

& x%2

x 2
0

9x %3 · 7(7 · 7)�x̃ %3 dx2 dx1−
& x%1

x 1
0

& x%2

x 2
0

9x3
0 · 7 (7 · 7)�x̃ 3

0 dx2 dx1
n

i.e. a total rate of energy transport across the boundaries, similar, but not identical to
	G(n · 7)(7 · 7) dG. These terms, dubbed K0 G0 imposed 7̃ in the work, must be added to the right hand
side of Equation (13) when circumstances require.

This approach may seem comparatively crude in the light of rather elegant work done by
Temam [16] for flows driven by their boundaries, however, the intended purpose differs
slightly. What is here being sought is a bound formulated in terms of known, physically
comprehensible quantities at the boundary which are independent of the solution.

A.2. The ramifications of Assumption 1

If one does not make Assumption 1, contributions from the

r

Dt
�7̃n+a, (7̃n+1− 7̃n)J0 n+a�

term in Equation (15) and

1
2

r
#
7̃n+a, 7̃n+a

(J0 n+1−J0 n)
Dt

$
in Lemma 2 amount to

r

Dt
�7̃n+a, (7̃n+1− 7̃n)J0 n+a�+

r

Dt
1
2

�7̃n+a, 7̃n+a(J0 n+1−J0 n)�

=
r

Dt
1�

a−
1
2
� ��7̃n+a, (7̃n+a− 7̃n+1/2)J0 n+a�+

1
2

�7̃n+a, 7̃n+a(J0 n+a−J0 n+1/2)�n
=

r

Dt
1�

a−
1
2
� �3

2
�7̃n+a, 7̃n+aJ0 n+a�−�7̃n+a, 7̃n+1/2J0 n+a�−

1
2

�7̃n+a, 7̃n+aJ0 n+1/2�n
=

r

Dt
1�

a−
1
2
� �3

2
�a7̃n+1+ (1−a)7̃n, a7̃n+1+ (1−a)7̃naJ0 n+1+ (1−a)J0 n�
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−
#

a7̃n+1+ (1−a)7̃n,
1
2

(7̃n+1+ 7̃n)aJ0 n+1+ (1−a)J0 n
$

−
1
2
#

a7̃n+1+ (1−a)7̃n, 7̃n+a

1
2

(J0 n+1+J0 n)
$n

=3a2 1
Dt

(K0 (7̃n+1)−K0 (7̃n))+
1
Dt

6
�

a−
1
2
�

K0 (7̃n)

+
r

Dt
<a

2
(2−3a)�7̃n+1, 7̃n+1 Jn�+a(2−3a)�7̃n, 7̃n+1 Jn+1�

−
1
4

(1−a)(3a−1)�7̃n, 7̃n+1 Jn�+
(1−a)2(6a−1)

4
�

a−
1
2
� �7̃n, 7̃n Jn+1�=

(by repeated substitution of (14) and (16)). Thus, the ramifications of Assumption 1 are that
the total

1
Dt

6
�

a−
1
2
�

K0 (7̃n)+
r

Dt
<a

2
(2−3a)�7̃n+1, 7̃n+1 Jn�+a(2−3a)�7̃n, 7̃n+1 Jn+1�

−
1
4

(1−a)(3a−1)�7̃n, 7̃n+1 Jn�+
(1−a)2(6a−1)

4
�

a−
1
2
� �7̃n, 7̃n Jn+1�=

is positive, furthermore it is sufficiently positive to offset any subsequent short-coming which
arises when Assumption 1 is exploited in the proof of Lemma 7, i.e. in the event of

4nCa(1−a)(7̃n+1J0 n+12−7̃n+1J0 n+a2)

and

4nCa(1−a)(7̃nJ0 n2−7̃nJ0 n+a2)

not being positive.

APPENDIX B. (PROOFS)

B.1. Proof of Relation 1

The above relation (taken from Hughes et al. [6]) is obtained by recalling that the material
derivative (total derivative) is the derivative with respect to time in the material configuration.
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Thus

D6̃i
Dt

=
(

(t
{6̃i(l0 (x0, t), t)} (22)

=
(6̃i
(t

+
(6̃i
(x̃j

(l0 j
(t

A more practical expression is needed for (l0 j/(t (the velocity as perceived in the distorting
reference). This can be obtained by considering

lk(x0, t)=l*k (l0 (x0, t), t) (see Figure 1)

so that

(lk

(t
)
x 0 fixed

=
(l*k
(t

)
x̃ fixed

+
(l*k
(x̃j

(l0 j
(t

or

(l0 j
(t

=
(x̃j

(xk

�(lk

(t
)
x 0 fixed

−
(l*k
(t

)
x̃ fixed

�
Substituting this expression into Equation (22), the desired, suitably practicable result is
obtained.

B.2. Proof of Inequality 1

Consider the change to spherical co-ordinates

6̆i(r, u, f)=6i(r sin u cos f−x1
origin, r sin u sin f−x2

origin, r cos u−x3
origin)

centred on xorigin. Suppose the radial limits of the domain and neighbourhood are denoted
Rb(u, f) and Ra(u, f) respectively. By the fundamental theorem of integral calculus

(6̆i(r, u, f)− 6̆i �Ra(u, f))2=
�& r

Ra(u, f)

(6̆i
(r

(j, u, f) dj
�2

=
�& r

Ra(u, f)

1
j

j
(6̆i
(r

(j, u, f) dj
�2

5
& r

Ra(u, f)

1
j2 dj

& r

Ra(u, f)

�(6̆i
(r

(j, u, f)
�2

j2 dj

(by Schwarz inequality)
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5
& Rmax

R min

1
j2 dj

& Rb (u, f)

Ra(u, f)

�(6̆i
(r

(j, u, f)
�2

j2 dj (for r�V" )

=
(Rmax−Rmin)

RmaxRmin

& Rb (u, f)

Ra(u, f)

�(6̆i
(r

(j, u, f)
�2

j2 dj

=
(Rmax−Rmin)

RmaxRmin

V" i(u, f)

where

V" i(u, f)=
& Rb (u, f)

Ra(u, f)

�(6̆i
(r

(j, u, f)
�2

j2 dj

Integrating this result over that part of V" outside the neighbourhood (angular extent being
Ua(f)5uBUb(f) and Fa5f5Fb)

& Fb

Fa

&Ub (f)

Ua(f)

& Rb (u, f)

Ra(u, f)

(6̆i(r, u, f)− 6̆i �Ra(u, f))2r2 sin u dr du df

5
(Rmax−Rmin)

RmaxRmin

& Fb

Fa

&Ub (f)

Ua(f)

& Rb (u, f)

Ra(u, f)

V" i(u, f)r2 sin u dr du df

5
(Rmax−Rmin)

RmaxRmin

& Fb

Fa

&Ub (f)

Ua(f)

V" i(u, f)
�& Rmax

R min

r2 dr
�

sin u du df

5
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

& Fb

Fa

&Ub (f)

Ua(f)

& Rb (u, f)

Ra(u, f)

�(6̆i
(r
�2

r2 sin u dr du df

5
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

& Fb

Fa

&Ub (f)

Ua(f)

& Rb (u, f)

Ra(u, f)

��(6̆i
(r
�2

+
1
r2

�(6̆i
(u

�2

+
1

r2 sin2 u

�(6̆i
(f

�2n
r2 sin u dr du df

=
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

& Fb

Fa

&Ub (f)

Ua(f)

& Rb (u, f)

Ra(u, f)

(96̆i) · (96̆i)r2 sin u dr du df

Changing back to the original rectangular co-ordinates and defining 7 �bndry to be a radially
constant function throughout V which takes the values of 7̆ �Ra(u, f) for r=Ra(u, f),

&
V�

(6i(x)−6i �bndry)2 dV5
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

&
V�

(96i(x)) · (96i(x)) dV

where V� is V excluding the neighbourhood. Summing over i,
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&
V�

(7−7 �bndry) · (7−7 �bndry) dV5
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

&
V�

(97):(97) dV

Making use of either the Cauchy–Schwarz or triangle inequality,

(7L 2(V�)
−7 �bndryL 2(V�)

)25
(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

97L 2(V�)
2

and remembering that sup �7̆ �Ra(u, f)�5c,

7L 2(V�)
5
�(Rmax−Rmin)(Rmax

3 −Rmin
3 )

3RmaxRmin

n1/2

97L 2(V�)
+cL 2(V�)

Consider the terms ��7 ��L 2 and ��c ��L 2. Comparing these terms under circumstances of sup �7 �5c
leads to the conclusion that the inequality holds over the neighbourhood and that the
inequality is therefore unaffected when the domain of integration is extended to include the
neighbourhood. Of course, the radial extension of 7 �bndry can be used in place of c in instances
where inclusion of the neighbourhood is not required.

B.3. Proof of Lemma 1

If, in particular, 7 �bndry=0 in Inequality 1,

7L 2(V)5
97L 2(V)


C

C
1
2

7L 2(V)
2 5D(7)L 2(V)

2

(The relationship between D and 97 arises in the context of the original equations involving
div s. It is because

Dij, j=
1
2

(6i, jj+6j,ij)

=
1
2

(6i, jj+6j, ji) (changing the order of differentiation)

=
1
2
6i, jj (div 7=0 by incompressibility)

assuming, of course, that 7 is continuous and differentiable to first-order.) Rewriting in terms
of V0

C
r

K0 (7̃)5D0 (7̃)J0 1/2L 2(V0 )
2
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B.4. Proof of Lemma 2

Consider ũ · (90 7̃)F0 −1w̃J0 :

ũi6̃i, jF0 jk
−1w̃kJ0 = − ũi, j6̃iF0 jk

−1w̃kJ0 − ũi6̃i(F0 jk
−1w̃kJ0 ), j+ (ũi6̃iF0 jk

−1w̃kJ0 ), j

by the product rule. In the terms arising from (F0 jk
−1w̃kJ0 ), j

F0 jk, j
−1=

(

(x̃j

(x̃j

(xk

=
(

(xk

(x̃j

(x̃j

(order of differentiation interchangeable for x̃(x, t) continuous)

=0

and

J0 , jF0 jk
−1=

(

(x̃j

det
!(x
(x̃
" (x̃j

(xk

=
(

(xk

det
!(x
(x̃
"

=0

The latter result becomes apparent when considering that all terms which arise from the
differentiation of the determinant contain factors of the form (2xi/(xj (x̃k. These vanish as
continuity once again affords the order of differentiation interchangeable. Thus

ũi6̃i, jF0 jk
−1w̃kJ0 = − ũi, j6̃iF0 jk

−1w̃kJ0 − ũi6̃iF0 jk
−1w̃k, jJ0 + (ũi6̃iF0 jk

−1w̃kJ0 ), j

Integrating over the domain V0 and applying the divergence theorem,

�ũ, (90 7̃)F0 −1w̃J0 �L 2(V0 )= −�7̃, (90 ũ)F0 −1w̃J0 �L 2(V0 )−�ũ(90 w̃ :F0 − t), 7̃J0 �L 2(V0 )

+�ũ, 7̃(F0 − tN0 · w̃)J0 �L 2(G0 ) (23)

Thus the term

2�7̃, (90 7̃)F−1(7̃− 7̃ ref)J0 �L 2(V0 )= −�7̃(90 (7̃− 7̃ ref):F0 − t), 7̃J0 �L 2(V0 )

+�7̃,7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )=�7̃(90 7̃ ref:F0 − t), 7̃J0 �L 2(V0 )

+�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 ) (by incompressibility)
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=�7̃(90 7̃ ref:F0 − t), 7̃J0 �L 2(V0 )+�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )

=
#
7̃, 7̃
(J0
(t
$

L 2(V0 )
+�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )

since (J0 /(t=J0 div 7 ref (which is J0 90 7̃ ref:F0 − t) in the same vein as J: 0=J0 div 7 (the kinematic
result used in Section 2).

Equation (23) is vital to the deforming reference analysis in particular. It forms the basis to
this lemma and another (Lemma 6) concerned with the time discrete analysis.

B.5. Proof of Lemma 3

By referring to Figure 1 one observes that

lj(x0, t)=l*j (l0 (x0, t), t)

and consequently that

(lj

(t
)
x 0 fixed

=
(l*j
(t

)
x̃ fixed

+
(l*j
(x̃i

(l0 i
(t

That is

F0 −1(7̃− 7̃ ref)=
(l0
(t

In other words F0 −1(7̃− 7̃ ref) is the velocity perceived in the deforming reference. This perceived
velocity is tangent to the free surface since the description was stipulated to be one in which
ñ · (7̃− 7̃ ref) vanishes at free surfaces. Remembering that N0 is a surface normal as defined in
terms of this self-same reference,

N0 · F0 −1(7̃− 7̃ ref)=0 [ −
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )=0

at free boundaries.

B.6. Proof of Lemma 4

In terms of the Cauchy–Schwarz inequality,

�7̃, b0 J0 �L 2(V0 )57̃J0 1/2L 2(V0 )b0 J0 1/2L 2(V0 )

5
nC
2

7̃J0 1/2L 2(V0 )
2 +

1
2nC

b0 J0 1/2L 2(V0 )
2 for nC\0

by Young’s inequality. Similarly,

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 979–1019
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�7̃, P0 N0 �L 2(G0 )5
nC
2

7̃L 2(G0 )
2 +

1
2nC

P0 N0 L 2(G0 )
2 for nC\0

B.7. Proof of Lemma 5

For a description which becomes purely Eulerian at a fixed boundary across which there is an
imposed velocity,

−
1
2

r�7̃, 7̃(F0 − tN0 · (7̃− 7̃ ref))J0 �L 2(G0 )= −
1
2

r�7, 7(n · 7)�L 2(G)

5
1
2

r
)&

G
[7 · 7(n · 7)1/2](n · 7)1/2 dG

)
5

1
2

r
�&

G
n · 7 dG

�1/2�&
G

(7 · 7)2n · 7 dG
�1/2

=0
(by Schwarz inequality)

since the total flow across the boundaries, 	G n · 7 dG of a fixed volume of incompressible fluid
must be zero.

B.8. Proof of Lemma 6

By Equation (23) of the Lemma 2 proof.

B.9. Proof of Lemma 7

By Young’s inequality

7̃n+1J0 n+a
1/2 L 2(V0 n+a

)7̃nJ0 n+a
1/2 L 2(V0 n+a

)5
�c

2
�7̃n+1J0 n+a

1/2 L 2(V0 n+a
)

2 +
� 1

2c
�7̃nJ0 n+a

1/2 L 2(V0 n+a
)

2

(24)

for c\0. Writing K0 (7̃n+a) explicitly in terms of the ‘intermediate’ velocity definition, (14),
leads to

K0 (7̃n+a)=a2K0 (7̃n+1)+ (1−a)2K0 (7̃n)+2a(1−a)�7̃n+1, 7̃nJ0 n+a�L 2(V0 n+a
)

]a2K0 (7̃n+1)+ (1−a)2K0 (7̃n)−2a(1−a)7̃n+1J0 n+a
1/2 L 2(V0 n+a

)7̃nJ0 n+a
1/2 L 2(V0 n+a

)

]a [a− (1−a)c ]K0 (7̃n+1)+ (1−a)
�

(1−a)−
a

c
n

K0 (7̃n)

using Equation (24).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 979–1019
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